On a new fractional Sobolev space with variable exponent on complete manifolds

نویسندگان

چکیده

Abstract We present the theory of a new fractional Sobolev space in complete manifolds with variable exponent. As result, we investigate some our space’s qualitative properties, such as completeness, reflexivity, separability, and density. also show that continuous compact embedding results are valid. apply conclusions this study to variational analysis class $p(z, \cdot )$ p(z,⋅) -Laplacian problems involving potentials vanishing behavior at infinity an application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a nonlinear eigenvalue problem in Sobolev spaces with variable exponent

Abstract. We consider a class of nonlinear Dirichlet problems involving the p(x)–Laplace operator. Our framework is based on the theory of Sobolev spaces with variable exponent and we establish the existence of a weak solution in such a space. The proof relies on the Mountain Pass Theorem.

متن کامل

On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent

We consider the nonlinear eigenvalue problem −div ( |∇u|∇u ) = λ|u|u in Ω, u = 0 on ∂Ω, where Ω is a bounded open set in R with smooth boundary and p, q are continuous functions on Ω such that 1 < infΩ q < infΩ p < supΩ q, supΩ p < N , and q(x) < Np(x)/ (N − p(x)) for all x ∈ Ω. The main result of this paper establishes that any λ > 0 sufficiently small is an eigenvalue of the above nonhomogene...

متن کامل

Nonlinear eigenvalue problems in Sobolev spaces with variable exponent

Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...

متن کامل

Multiplicity Results for Equations with Subcritical Hardy-sobolev Exponent and Singularities on a Half-space

We prove some multiplicity results for a class of singular quasilinear elliptic problems involving the critical Hardy-Sobolev exponent and singularities on a half-space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boundary Value Problems

سال: 2022

ISSN: ['1687-2770', '1687-2762']

DOI: https://doi.org/10.1186/s13661-022-01590-5